THE GUIDE TO

Concrete Masonry
Residential Construction
in HIGH-WIND AREAS

Recommendations for Design and Construction
June 30, 1997
The purpose of this Guide is to simplify the construction and design of concrete masonry single story buildings in high wind areas where fastest-mile design wind velocities reach 90, 100 and 110 miles per hour. THIS GUIDE IS IN COMPLIANCE WITH THE 1994 EDITION WITH 1996 REVISIONS AND 1997 EDITION, CHAPTER 16 OF THE STANDARD BUILDING CODE ON WIND AND LIVE LOADS. The concrete masonry was designed in accordance with the Building Code Requirements for Masonry Structures (ACI 530-95).

The provisions of this Guide are directed toward ensuring structural integrity for resisting wind loads. They do not address requirements for earthquake or flood loads, or any other more stringent design considerations. Where specific construction requirements are not given, appropriate requirements of the Standard Building Code shall prevail.

For buildings outside the range of design parameters, design load criteria, and materials and methods of construction outlined in this Guide, the design shall be structurally reviewed for wind resistance by a registered engineer or architect when required by the Building Official.

Individual elements of a building not in strict compliance with, or addressed by this Guide may be engineered without requiring engineering for the entire building. Elements which maintain the structural integrity of the building envelope shall comply with Section 1606 of the Standard Building Code. Windows and doors shall be designed for Components and Cladding loads of SBC 1606.

Elements and assemblies not specifically addressed by this Guide shall be:

1. (except for clay brick), in conformance with SBCCI's "Standard for Hurricane Resistant Residential Construction", SSTD 10 for buildings within the same parameters as this document including size, height and roof slope, or
2. designed in accordance with Section 1606 of the Standard Building Code.

Roofs, ceilings and suspended floors are designed as diaphragms to receive lateral loads from exterior walls (assuming the wind blowing from any direction) and to transfer these loads to diaphragm edges where they will be resisted by shearwalls.

Exterior walls are designed to resist wind forces and transfer the lateral loads to diaphragms and to the ground. Exterior walls and foundations are designed to restrain uplift loads received from the roof by means of connected dead loads. Deflection criteria are based upon those given in the Standard Building Code.

Wind load velocity areas where design winds can exceed 110 miles per hour and multi-story construction are beyond the scope of this manual. Also, it is not the intention of this manual to instruct on proper roof framing techniques. Foundation systems need to be provided that are capable of resisting the applied loads and with consideration for subsurface conditions. Foundations shall be in accordance with SSTD 10 or engineered. Additional connections may be required to satisfy the requirements of finishes, waterproofing, and non-structural concerns.

THE INFORMATION IN THIS MANUAL HAS BEEN DESIGNED WITH DUE CARE AND OFFERED FOR THE PURPOSE OF PROVIDING USEFUL INFORMATION TO ARCHITECTS, BUILDERS, DESIGNERS, LOCAL AUTHORITIES, INSTRUCTORS AND OTHER INTERESTED PARTIES IN SIMPLIFIED DESIGN OF SINGLE STORY BUILDINGS WHICH MEET APPLICABLE BUILDING CODES. THE AUTHORS AND SPONSORS DO NOT, HOWEVER, ASSUME ANY RESPONSIBILITY FOR ERRORS OR OMISSIONS IN THE GUIDE, NOR FOR DESIGNS, PLANS OR STRUCTURES PREPARED FROM IT. THE GUIDE IS BASED UPON THE IMPLEMENTATION OF THE DETAILS SHOWN BEING CARRIED OUT IN ACCORDANCE WITH ALL APPLICABLE CODES, STANDARDS, GUIDES, AND GOOD QUALITY WORKMANSHIP.
DEFINITIONS

THE FOLLOWING DEFINITIONS DESCRIBE SOME OF THE TERMINOLOGY USED IN THIS MANUAL:

BLOCKING:
SOLID WOOD BLOCK WHICH PROVIDES LATERAL SUPPORT AS IN BRIDGING, AND/OR EDGE SUPPORTING FOR SHEATHING.

BOND BEAM BLOCK:
A STANDARD BLOCK UNIT MANUFACTURED WITH 2¼" RECESS FOR HIGH PLACEMENT OF REINFORCEMENT TO RESIST UPLIFT FORCES.

CEILING HEIGHT:
NOMINAL DISTANCE MEASURED AT THE SIDEWALL BETWEEN TOP OF FLOOR AND BOTTOM SURFACE OF CEILING ABOVE THAT IS DIRECTLY ATTACHED TO ROOF FRAMING SYSTEM.

DIAPHRAGM:
A HORIZONTAL STRUCTURAL UNIT COMPOSED OF SHEATHING, FRAMING MEMBERS, AND PERIMETER MEMBERS WHICH ACT AS A DEEP THIN BEAM TO TRANSFER LATERAL FORCES TO VERTICAL RESISTING ELEMENTS.

END ZONE:
FOR PURPOSES OF THIS PUBLICATION, DEFINED AS THE END EIGHT FEET (8'-0") OF ONE END OF THE BUILDING. END ZONES DO NOT OCCUR SIMULTANEOUSLY ON BOTH ENDS AT THE SAME TIME.

GABLE END WALL:
THE EXTERIOR WALL, WITH AN UPPER VERTICAL TRIANGULAR-SHAPED PORTION, PERPENDICULAR TO THE ROOF RIDGE AND PARALLEL TO ROOF RAFTERS OR TRUSSES.

GROUT:
A MIXTURE OF CEMENTITIOUS MATERIAL AND AGGREGATE TO WHICH WATER IS ADDED TO PROVIDE 8' TO 11' SLUMP. COARSE GROUT CONSISTS OF PORTLAND CEMENT, SAND, PEA GRAVEL AND WATER. FINE GROUT CONSISTS OF PORTLAND CEMENT, SAND AND WATER.

GROUT STOP:
A PLASTIC SCREEN, METAL LATH STRIP OR CAVITY CAP USED TO PREVENT THE FLOW OF GROUT INTO THE CELLS BELOW.

INTERIOR ZONE:
FOR PURPOSES OF THIS PUBLICATION, DEFINED AS ALL BUT THE END EIGHT FEET (8'-0") OF THE BUILDING.

LENGTH:
The dimension of exterior walls parallel to the roof ridge and perpendicular to the span of roof rafters or trusses.

LENGTH TO WIDTH RATIO:
LENGTH/WIDTH

LINTEL:
A BEAM USED OVER WALL OPENINGS TO CARRY LOADS ACROSS THE OPENING. I.E. PRECAST, MASONRY, CAST-IN-PLACE.

LOADBEARING WALL:
A WALL THAT SUPPORTS VERTICAL LOAD IN ADDITION TO ITS OWN WEIGHT.
THE FOLLOWING DEFINITIONS DESCRIBE SOME OF THE TERMINOLOGY USED IN THIS MANUAL:

MASONRY LINTEL:
MASONRY LINTEL UNITS ARE USUALLY U-SHAPED WITH SOLID BOTTOM TO CONFINCE THE GROUT IN THE LINTEL. WHEN BOND BEAM BLOCK UNITS ARE USED UPSIDE DOWN TO CONSTRUCT LINTELS, THE REINFORCEMENT MUST BE TIED UP TO THE CROSS WEBS TO HOLD THE BARS IN PLACE AND THE BOTTOM MUST BE BLOCKED TO RETAIN THE GROUT.

SHEARWALL:
A WALL OR SEGMENT OF WALL DESIGNED TO TRANSFER LATERAL LOADS (WIND LOADS) FROM ROOF TO THE FOUNDATION. THIS VERTICAL STRUCTURAL UNIT ACTS AS A DEEP, THIN, VERTICAL, CANTILEVER BEAM DESIGNED TO RESIST LATERAL FORCES PARALLEL TO THE PLANE OF THE WALL.

SHEARWALL PIER:
THE PORTION OF A SHEARWALL SEGMENT ADJACENT TO AND EQUAL IN HEIGHT TO THE OPENING WITH THE SHORTEST HEIGHT ON EITHER SIDE OF THE SHEARWALL SEGMENT.

SHEARWALL PIER HEIGHT:
THE HEIGHT OF THE SHORTEST OPENING HEIGHT ON EITHER SIDE OF A SHEARWALL SEGMENT.

SHEATHING:
THE STRUCTURAL COVERING USED DIRECTLY OVER STUDS, TRUSSES OR RAFTERS OF A STRUCTURE TO RESIST LATERAL LOADS.

WIDTH:
THE DIMENSION OF EXTERIOR WALLS PERPENDICULAR TO THE ROOF RIDGE AND PARALLEL TO THE SPAN OF ROOF RAFTERS OR TRUSSES.
This guide is provided in three separate design sections. The first design section provides the design criteria for buildings designed for 90 mile per hour wind speeds. The second design section provides the design criteria for buildings designed for 100 mile per hour wind speeds. The third design section provides the design criteria for buildings designed for 110 mile per hour wind speeds. For simplicity, the drawings and elevations on pages 1.9 and 1.10 refer to the sheet numbers for various design aspects of a typical residence. These sheet number references apply to the 90, 100 and 110 mile per hour wind speed tables and figures, should the design wind speed be 90, 100 or 110 mile per hour.

This document is limited to use in the design of single-story, concrete masonry buildings. In general:

- Concrete slab-on-grade or crawl space.
- Top of floor is not more than 3 feet above grade.
- Maximum truss span is 40'-0" clear between supports.
- Maximum width or length is 80 feet; maximum height is 25 feet.
- Ceiling heights are not more than 10 feet.
- Exterior walls are constructed with 8" concrete masonry units.
- Roof pitches are no less than 2:12 (10 degrees) and no greater than 7:12 (30 degrees).
- Roof sheathing is at least 7/16 inches thick.
- Building length/width ratio no greater than 2:1 and no less than 1:2.
- Building legs (for "T" or "L" shaped buildings) have a maximum length/width ratio of 2:1, but have no minimum length/width ratio.
- The roof overhang is limited to a maximum of 2 feet.
- Interior bearing walls are constructed with 6" or 8" concrete masonry units.

DESIGN LOAD ASSUMPTIONS

Design Wind Loads:

Main Wind Force Resisting Systems (MWFRS): Design of the following structural systems and connections were based on the coefficients given in the Standard Building Code.

1. shearwalls,
2. roof diaphragms,
3. bond beams,
4. gable and endwalls,
5. rafter and truss connectors to bond beams and,
6. all other connector links in the wind resistance chain to uplift, overturning and sliding.
7. exterior masonry walls in conjunction with uplift loads.

Components and Cladding (C&C): The elements of the building designed under the provisions for C&C and maximum tributary area assumed include:

1. sheathing fasteners, maximum tributary area of 10 sq. ft.,
2. wood structural panels spans are based upon a minimum of two continuous spans (over three framing members),
3. exterior masonry walls, without any uplift forces, per Table 1606.2E. 1994 SBC, interior zone.

Live Loads:

Construction and other live loads acting on the building must not exceed a roof load of 20 psf with the normal reduction permitted for large tributary areas, in accordance with the Standard Building Code.
Dead Loads:

In developing the provisions of the Guide, the following assumptions were made about the magnitude, distribution, and influence of dead loads:

1. The total weight of roofing materials, ceiling, insulation, framing members, and other materials supported directly by the roof trusses or rafters does not exceed 25 psf on the horizontal projection.
2. For determination of resistance to uplift, sliding, and overturning of the gross building, the roof dead load was taken as 10 psf.
3. Overturning resistance was based on the total building dead load.

MASONRY AND REINFORCING STEEL

Concrete masonry units shall be hollow unit masonry in accordance with ASTM C 90 and shall have a minimum net area compressive strength of 1900 psi when using Type M or S mortar (ASTM C 270). In accordance with ACI 530, the 1900 psi block in combination with Type M or S mortar provide a design compressive strength (f’m) of 1500 psi. The reinforcement shall be a minimum Grade 40 and identified in accordance with ASTM A 615.

Reinforcement Splices: Lap splice lengths shall be a minimum of 25 inches for #5 bars, 30 inches for #6 bars and 35 inches for #7 bars.

Reinforcement Substitutions: Where two #5 bars are required within the same grouted masonry cell or bond beam, one #7 bar may be substituted.

Bending Reinforcement: All reinforcement shall be bent cold, in the shop or in the field, provided the bend diameter, measured on the inside of the bar, is not less than six-bar diameters. Reinforcement partially embedded in concrete shall not be field bent. EXCEPTION: If bending is necessary to align dowel bars with a vertical cell, bars partially embedded in concrete shall be permitted to be bent at a slope of not more than 1 inch of horizontal displacement to 6 inches of vertical bar length.

Grout: The grout shall have a maximum course aggregate size of 3/8 inch placed at an 8 to 11 inch slump and have a minimum specified compressive strength of 2000 psi at 28 days when tested in accordance with ASTM C 1019, or shall be in accordance with ASTM C 476.

Masonry Cleanout: Cleanout openings (12 sq. in.) shall be provided for cells containing spliced reinforcement when the grout pour exceeds 5 feet in height.

Concrete Walls: Cast in place concrete walls can be used as an alternate to masonry walls. Refer to SSTD 10 for equivalent wall thicknesses and additional design requirements.

ENGINEERED WOOD ROOF TRUSS FRAMING SYSTEMS

Trusses shall be designed by a registered engineer or architect in accordance with ANSI/TPI National Design Specifications for Metal Plate Connected Wood Truss Construction. The top chords of trusses shall be Group II species lumber, with a specific gravity G=0.46 or greater.

Truss Spacing: Metal plate connected wood trusses shall be spaced no more than 24 inches on center and designed for live loads and wind loads for an enclosed building based on the Standard Building Code.
Connections: Uplift connectors shall be provided at truss bearing to resist uplift loads and loads parallel and perpendicular to the masonry wall. The uplift requirements may be interpolated for intermediate building widths.

Separation: Provide approved separation between untreated wood and concrete or masonry.

FASTENERS AND CONNECTORS

A continuous load path between foundations, floors, walls, and roof framing shall be provided.

Approved connectors, anchors, and other fastening devices not included in the Standard Building Code shall be installed in accordance with the manufacturer’s recommendations. Where fasteners are not otherwise specified in this Guide, fasteners shall be provided in accordance with the Standard Building Code. Nails, screws, or bolts shall be able to resist the forces specified in this Guide.

(See NER 272 for information on power driven fasteners)

Metal plates, connectors, screws, bolts and nails exposed directly to the weather or subject to salt corrosion in coastal areas, as determined by the Building Official, shall be stainless steel, hot dipped galvanized after the fastener or connector is fabricated, to form a zinc coating not less than 1 oz. per sq. ft., or hot dipped galvanized coated with a minimum of 1.8 oz. per sq. ft. of steel meeting the requirements of ASTM 90 Triple Spot Test.

Unless otherwise stated, sizes given for nails are common wire nails. For example, 8d = 2½ in. long x 0.131 in. diameter. See the National Design Specifications for Wood Construction.
TYPICAL ROOF PLANS

NOTE
These roof plans show typical configurations & shapes to convey the range of the system.

Gables & hips are interchangeable for plans shown.

* The main building maximum dimensions are 40' x 80'.

GUIDE TO CONCRETE MASONRY RESIDENTIAL CONSTRUCTION IN HIGH WIND AREAS. 1997
* REFER TO THE CORRESPONDING WIND SPEED SECTION FOR THE SHEET NUMBER REFERENCED ABOVE.
(EXAMPLE: FOR SHEET 10, GO TO 90.10, 100.10 OR 11C.10)

GUIDE TO CONCRETE MASONRY RESIDENTIAL CONSTRUCTION IN HIGH WIND AREAS. 1997
TYPICAL WALL SECTION

DESIGN CODES
1994 STANDARD BUILDING CODE
WITH 1996 REVISIONS AND 1997 SBC
1991 NATIONAL DESIGN SPECIFICATION
ACI 530-95
SSTD 10-97

DESIGN LOADS AT ROOF
LIVE LOAD= 20 PSF
DEAD LOAD= 10 TO 25 PSF

ROOF SHAPES
CABLE OR HIP

DESIGN WIND VELOCITY
90, 100 OR 110 MPH

TRUSS SPAN
MAXIMUM 40'-0' CLEAR BETWEEN SUPPORTS

BUILDING DIMENSIONS
MAXIMUM DIMENSION= 80'-0'

MATERIAL PROPERTIES
(MINIMUM)
CONCRETE f'c= 2500 psi
MASONRY f'm= 1500 psi
REINFORCEMENT GRADE 40
MORTAR TYPE M OR S
GROUT STRENGTH= 2000 PSI

TYPES OF BOND BEAMS

HEADER BLOCK

GUIDE TO CONCRETE MASONRY RESIDENTIAL CONSTRUCTION IN HIGH WIND AREAS. 1997

1.11
GUIDE TO CONCRETE MASONRY RESIDENTIAL CONSTRUCTION IN HIGH WIND AREAS
90 MPH DESIGN WIND SPEED VELOCITY

90.1 Table of Contents - 90 mph Design Wind Velocity
90.2 Vertical Reinforcement Details
90.3 Vertical Reinforcement Spacing
90.4 Gable Endwall Vertical Reinforcement
90.5 Shearwall Design Notes
90.6 Shearwall Proportioning Example
90.7 Shearwall Design Table
90.8 Lintel Types
90.9 Lintel Types - Continued
90.10 Lintel Schedule
90.11 Gable Endwall Details
90.12 Interior Bearing Wall Detail
90.13 Interior Bearing Wall Openings
90.14 Roof Truss Anchor
90.15 Entry Condition Details
90.16 Valley / Hip Detail
90.17 Roof Sheathing Attachment
90.18 Alternate Gable End Detail
90.19 Alternate Gable End Detail - Cont.
90.20 Alternate Gable End Detail - Cont.
VERTICAL REINFORCEMENT DETAILS

ROOF SLOPE (2:12 TO 7:12)

SPAN

CEILING HEIGHT

BOND BEAM (TYPE A OR B, SEE PG. 1.11)

VERTICAL REINFORCEMENT IN FILLED CELL WITH GROUT

90 MPH WIND AREA

STEMWALL FOOTING DETAILS, SEE PG. 1.11

3' COVER

12' MIN.

#5 CONTIN. (TYP.)

* PER SSDT 10 WITH DESIGN CONSIDERATIONS FOR SITE SPECIFIC CONDITIONS.

6' MIN.

EMBEDMENT

STANDARD HOOK

BOND BEAM

VERT. REINF. IN GROUTED CELL

EMBED 5' FOR 8' DEEP FOOTING, 6' MIN. FOR ALL OTHER FOOTINGS

2 1/2' MIN. LAP

REINFORCING

STANDARD HOOK

3' MIN. COVER

CLEANEOUT REQ'D FOR GROUT LIFT >5 FT.
<table>
<thead>
<tr>
<th>Ceiling Height</th>
<th>Bond Beam</th>
<th>Span 0'-20'</th>
<th>Span >20' to 30'</th>
<th>Span >30' to 40'</th>
</tr>
</thead>
<tbody>
<tr>
<td>8'-0' or Less</td>
<td>A</td>
<td>15'-4''</td>
<td>14'-0''</td>
<td>12'-8''</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>15'-4''</td>
<td>15'-4''</td>
<td>15'-4''</td>
</tr>
<tr>
<td>8'-8'</td>
<td>A</td>
<td>12'-8''</td>
<td>12'-8''</td>
<td>12'-8''</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>12'-8''</td>
<td>12'-8''</td>
<td>12'-8''</td>
</tr>
<tr>
<td>9'-4'</td>
<td>A</td>
<td>11'-4''</td>
<td>11'-4''</td>
<td>11'-4''</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>11'-4''</td>
<td>11'-4''</td>
<td>11'-4''</td>
</tr>
<tr>
<td>10'-0'</td>
<td>A</td>
<td>9'-4''</td>
<td>9'-4''</td>
<td>9'-4''</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>9'-4''</td>
<td>9'-4''</td>
<td>9'-4''</td>
</tr>
</tbody>
</table>

Note:

1. Provide one #5 bar in grouted cell at all wall corners and intersections.
2. Provide 1 #5 bar in grouted cell at each side of openings wider than 8'-0' and at each end of shearwall segments. Provide 2 #5 bars on each side of openings wider than 12'-0'.
3. Provide one #5 bar in grouted cell at all locations where girders or girder trusses bear on the masonry wall.
4. Redistribute vertical reinforcement above openings to each side of opening. Provide ½ of the reinforcement interrupted by the opening or the amount required in Note 2, whichever is greater, on each side of the opening.
5. See pg. 1.11 for description of bond beam types 'A' and 'B'.
CONTINUOUS MASONRY GABLE END WALL VERTICAL REINFORCEMENT

MEAN ROOF HEIGHT = \frac{CEILING HEIGHT + MAX. GABLE HEIGHT}{2}

TO DETERMINE THE VERTICAL SPACING REQUIRED FOR CONTINUOUS MASONRY GABLE WALLS, USE ONE OF THE FOLLOWING METHODS:

METHOD 1.) DETERMINE THE MEAN ROOF HEIGHT OF THE GABLE END WALL AND USE THAT WALL HEIGHT IN THE TABLE BELOW TO OBTAIN THE VERTICAL REINFORCEMENT SPACING FOR THE ENTIRE WALL.

METHOD 2.) DIVIDE THE GABLE WALL INTO SEGMENTS AND VARY THE VERTICAL SPACING BASED ON THE AVERAGE WALL HEIGHT IN EACH SEGMENT.

<table>
<thead>
<tr>
<th>HEIGHT (EITHER BY METHOD 1 OR BY METHOD 2)</th>
<th>8' TO 10'</th>
<th>> 10' TO 13'</th>
<th>> 13' TO 16'</th>
<th>> 16' TO 19'</th>
<th>> 19' TO 22'</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXIMUM SPACING OF 1#5 IN FILLED CELLS</td>
<td>9'-4'</td>
<td>5'-4'</td>
<td>3'-4'</td>
<td>2'-8'</td>
<td>1'-4'</td>
</tr>
</tbody>
</table>

GUIDE TO CONCRETE MASONRY RESIDENTIAL CONSTRUCTION IN HIGH WIND AREAS. 1997
NOTES ON SHEARWALL LENGTH DESIGN

1.) MINIMUM SHEARWALL SEGMENT LENGTH SHALL BE 2'-0".
 FILLED CELL WITH 1#5 BAR REQUIRED AT EACH END OF SHEARWALL SEGMENT.
2.) PORTIONS OF WALLS WITH OPENINGS SHALL NOT BE CONSIDERED PART OF THE SHEARWALL LENGTH.
3.) THE CUMULATIVE SHEARWALL LENGTH FOR EACH SIDE OF THE BUILDING MUST BE EQUAL TO OR GREATER THAN THE TABULATED SHEARWALL LENGTH REQUIRED.

* DOES NOT HAVE TO BE CONTINUOUS, AS LONG AS TOTAL LENGTH OF SEPARATE SEGMENTS MEETS THE SHEARWALL LENGTH REQUIREMENTS.
FOR SHEARWALL PROPORTIONING, DIVIDE THE BUILDING INTO TWO RECTANGULAR BUILDINGS: 40'x50' MAIN BUILDING, AND 20'x20' LEG.

WIND 'A'
TO DETERMINE THE AMOUNT OF SHEARWALL REQUIRED IN 1, 3, AND 5, THE "WINDWARD MAIN BUILDING DIMENSION" IS 50'. PER THE TABLE ON 90.4, THE REQUIRED SHEARWALL LENGTH IS 1'-4". HOWEVER, THE MINIMUM SHEARWALL SEGMENT LENGTH IS 2'-0". THEREFORE PROVIDE A 2'-0" SEGMENT IN 1 AND A 2'-0" SEGMENT IN 3. 5 DOES NOT HAVE A SHEARWALL REQUIREMENT BECAUSE THE WINDWARD BUILDING AREA OF THE MAIN BUILDING WAS NOT INCREASED BY THE LEG.

WIND 'B'
TO DETERMINE THE AMOUNT OF SHEARWALL REQUIRED IN 2, 4, AND 6; THE LENGTH REQUIRED IN 2 AND THE MAIN BUILDING PORTION OF 6 IS BASED UPON 40' FOR A GABLE END. THE LENGTH REQUIRED FOR 4 AND THE LEG PORTION OF 6 IS BASED UPON 20'. THE SHEARWALL LENGTH IN 6 SHALL BE EQUAL TO THE SUM OF 2 AND 4. FOR THIS EXAMPLE, 2 REQUIRES 1'-10" (2'-0" MIN.), 4 REQUIRES 0'-4" (2'-0" MIN.) AND 6 REQUIRES 2'-2" (1'-10" + 0'-4").
90 MPH WIND AREA

REQUIRED SHEARWALL LENGTH (2:12 TO 7:12 ROOF SLOPE)

<table>
<thead>
<tr>
<th>WINDWARD BUILDING DIMENSION</th>
<th>SHEARWALL LENGTH REQUIRED (EACH SIDE) OF BUILDING (EXCEPT GABLE END WINDS)</th>
<th>SHEARWALL LENGTH REQUIRED (EACH SIDE) OF BUILDING PERPENDICULAR TO GABLE END</th>
</tr>
</thead>
<tbody>
<tr>
<td>10' TO 20'</td>
<td>0'–4' *</td>
<td>0'–5' *</td>
</tr>
<tr>
<td>>20' TO 30'</td>
<td>0'–8' *</td>
<td>1'–1' *</td>
</tr>
<tr>
<td>>30' TO 40'</td>
<td>1'–0' *</td>
<td>1'–10' *</td>
</tr>
<tr>
<td>>40' TO 50'</td>
<td>1'–4' *</td>
<td></td>
</tr>
<tr>
<td>>50' TO 60'</td>
<td>1'–9' *</td>
<td></td>
</tr>
<tr>
<td>>60' TO 70'</td>
<td>2'–1'</td>
<td></td>
</tr>
<tr>
<td>>70' TO 80'</td>
<td>2'–5'</td>
<td></td>
</tr>
</tbody>
</table>

* 2'–0' MINIMUM SHEARWALL SEGMENT LENGTH

NOTE: MAXIMUM SHEARWALL PIER HEIGHT = 6'–0' FOR 2'–0' LENGTH. A MAXIMUM SHEARWALL PIER HEIGHT OF 8'–8' IS ALLOWED FOR SHEARWALL LENGTHS OF 2'–8' OR GREATER.
<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>8x8 MasonryLintel w/1#5 Bottom Filled Solid with Grout</td>
<td>D</td>
<td>8x32 MasonryLintel w/2#5 Bottom Filled Solid with Grout</td>
</tr>
<tr>
<td>B2</td>
<td>8x16 MasonryLintel w/1#5 Bottom Filled Solid with Grout</td>
<td>D2</td>
<td>8x32 MasonryLintel w/3#5 Bottom Filled Solid with Grout</td>
</tr>
<tr>
<td>C</td>
<td>8x24 MasonryLintel w/1#5 Bottom Filled Solid with Grout</td>
<td>C2</td>
<td>8x24 MasonryLintel w/2#5 Bottom Filled Solid with Grout</td>
</tr>
<tr>
<td>E</td>
<td>5x40 MasonryLintel w/3#5 Bottom Filled Solid with Grout</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8x8 CAST IN PLACE CONCRETE BEAM (2500 PSI) WITH 1#5 BOTTOM

8x16 CAST IN PLACE CONCRETE BEAM (2500 PSI) WITH 2#5 BOTTOM

8x24 CAST IN PLACE CONCRETE BEAM (2500 PSI) WITH 2#6 BOTTOM

8x32 CAST IN PLACE CONCRETE BEAM (2500 PSI) WITH 2#7 BOTTOM

2#5

#3 STIRRUPS @7" O/C

8x16 CAST IN PLACE CONCRETE BEAM (2500 PSI)

2#6

#3 STIRRUPS @11" O/C

8x24 CAST IN PLACE CONCRETE BEAM (2500 PSI)

2#5

#3 STIRRUPS @15" O/C

4#6

8x32 CAST IN PLACE CONCRETE BEAM (2500 PSI)
Lintel Schedule

<table>
<thead>
<tr>
<th>Max. Clear Opening Width</th>
<th>Roof Truss Span</th>
<th>Precast Lintel Allowable Load (PLF)</th>
<th>Masonry Lintel</th>
<th>Cast in Place Beams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 3'-0"</td>
<td>0' TO 20'</td>
<td>650</td>
<td>A2</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>>20' TO 30'</td>
<td>650</td>
<td>A2</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>>30' TO 40'</td>
<td>1,100</td>
<td>A2</td>
<td>G</td>
</tr>
<tr>
<td>>3'-0" TO 6'-0"</td>
<td>0' TO 20'</td>
<td>650</td>
<td>B2</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>>20' TO 30'</td>
<td>875</td>
<td>B2</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>>30' TO 40'</td>
<td>1,100</td>
<td>B2</td>
<td>H OR K</td>
</tr>
<tr>
<td>>6'-0" TO 9'-0"</td>
<td>0' TO 20'</td>
<td>650</td>
<td>B3</td>
<td>H OR K</td>
</tr>
<tr>
<td></td>
<td>>20' TO 30'</td>
<td>875</td>
<td>C</td>
<td>H OR K</td>
</tr>
<tr>
<td></td>
<td>>30' TO 40'</td>
<td>1,100</td>
<td>C2</td>
<td>J OR K</td>
</tr>
<tr>
<td>>9'-0" TO 12'-0"</td>
<td>0' TO 20'</td>
<td>650</td>
<td>B3</td>
<td>H OR K</td>
</tr>
<tr>
<td></td>
<td>>20' TO 30'</td>
<td>875</td>
<td>C</td>
<td>H OR K</td>
</tr>
<tr>
<td></td>
<td>>30' TO 40'</td>
<td>1,100</td>
<td>C2</td>
<td>J OR L</td>
</tr>
<tr>
<td>>12'-0" TO 15'-0"</td>
<td>0' TO 20'</td>
<td>650</td>
<td>C2</td>
<td>J OR L</td>
</tr>
<tr>
<td></td>
<td>>20' TO 30'</td>
<td>875</td>
<td>D</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>>30' TO 40'</td>
<td>1,100</td>
<td>D</td>
<td>M</td>
</tr>
<tr>
<td>>15'-0" TO 18'-0"</td>
<td>0' TO 20'</td>
<td>650</td>
<td>D</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>>20' TO 30'</td>
<td>875</td>
<td>E</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>>30' TO 40'</td>
<td>1,100</td>
<td>E</td>
<td>M</td>
</tr>
</tbody>
</table>

Note:

1. Must maintain continuity of bond beam at top of wall.
2. If masonry opening exceeds scheduled vertical reinforcement spacing, then lintel, bond beam and wall above opening shall be filled solid over opening width.
3. Rated capacity of precast lintel by itself or through composite action with other elements.
GABLE END WALL DETAILS

2x4 P.T. @ 2'-0" 0/C MAX.
ROOF SHEATHING

2'-0" MAX. OVERHANG

8' RAKED CONCRETE BEAM
WITH 1#5 TOP
MINIMUM DEPTH= 8'
OR
CUT MASONRY BOND BEAM
WITH 1#5 BAR
MINIMUM DEPTH= 8'

MASONRY WALL

UPLIFT= 276#
SHEAR= 235#

UPLIFT= 138#
DOWNLOAD= 90#

WOOD ROOF TRUSS

VARIATES CUT CMU
TO MATCH SLOPE
(8' MIN.)

CONCRETE SCREWS OR OTHER FASTENING
SYSTEM @12" O/C RATED FOR 138# PULLOUT
AND 118# SHEAR.

ROOF SHEATHING

NOTCH WEBS
2¾" FOR REINF.

MAINTAIN 1 COURSE
WITH 1#5 TOP
CONTIN.

STANDARD HOOK WITH
25' LAP (TYP.)

GROUT STOP

ALTERNATE
CUT MASONRY BOND BEAM

SEPARATION STRIP

MASONRY WALL

8' RAKED CONCRETE BEAM
WITH 1#5 TOP
MINIMUM DEPTH= 8'
OR
CUT MASONRY BOND BEAM
WITH 1#5 BAR
MINIMUM DEPTH= 8'

GUIDE TO CONCRETE MASONRY RESIDENTIAL
CONSTRUCTION IN HIGH WIND AREAS, 1997

90.11
Interior Bearing Wall Detail

Engineered Wood Roof Trusses, Designed for Interior Bearing

- **Standard Hook (25' Min. Lap)**
- **6' CMU (Min.)**
- **25' Minimum Lap**
- **#5 Contin. (Typ.)**
- **3' Cover**

NOTE:

PER STD 10 WITH DESIGN CONSIDERATIONS FOR SITE SPECIFIC CONDITIONS.

<table>
<thead>
<tr>
<th>Span</th>
<th>Roof Truss Anchor Net Uplift (LBS) (Trusses @ 24°)</th>
<th>Max. Spacing of #5 Bar in Filled Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Interior Zone</td>
<td>End Zone (Trusses 8' or closer to outside of endwall)</td>
</tr>
<tr>
<td>10'</td>
<td>57</td>
<td>114</td>
</tr>
<tr>
<td>20'</td>
<td>114</td>
<td>228</td>
</tr>
<tr>
<td>30'</td>
<td>171</td>
<td>342</td>
</tr>
<tr>
<td>40'</td>
<td>228</td>
<td>456</td>
</tr>
<tr>
<td>50'</td>
<td>285</td>
<td>570</td>
</tr>
<tr>
<td>60'</td>
<td>342</td>
<td>684</td>
</tr>
<tr>
<td>70'</td>
<td>399</td>
<td>798</td>
</tr>
<tr>
<td>80'</td>
<td>456</td>
<td>912</td>
</tr>
</tbody>
</table>

Note:

1. PROVIDE ONE #5 BAR IN GROUTED CELL AT CORNERS AND INTERSECTIONS.
2. PROVIDE 1 #5 BAR IN GROUTED CELL AT EACH SIDE OF OPENINGS WIDER THAN A 6'-0" AND 2 #5 BARS ON EACH SIDE OF OPENINGS WIDER THAN 12'-0".
3. PROVIDE ONE #5 BAR IN GROUTED CELL AT ALL LOCATIONS WHERE GIRDER OR GIRDER TRUSSES BEAR ON THE MASONRY WALL.
4. INTERIOR BEARING WALLS MAY BE CONSTRUCTED OF ALTERNATE MATERIALS IN ACCORDANCE WITH ACCEPTED STANDARDS.
Interior Bearing Wall Openings

InteRiOr BeArIng Wall oPEnInGs

Lintel Schedule for 6" CMU Interior Walls

<table>
<thead>
<tr>
<th>Truss Span (5)</th>
<th>Opening Width</th>
<th>Precast lintel Allowable Load (PLF)</th>
<th>Masonry lintel</th>
<th>Cast in Place Beams (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0' TO 20'</td>
<td>0' TO 6'</td>
<td>617</td>
<td>B2</td>
<td>H OR K</td>
</tr>
<tr>
<td></td>
<td>> 6' TO 9'</td>
<td></td>
<td>B3</td>
<td>J OR L</td>
</tr>
<tr>
<td></td>
<td>> 6' TO 12'</td>
<td></td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>>20' TO 30'</td>
<td>0' TO 6'</td>
<td>842</td>
<td>B2</td>
<td>H OR K</td>
</tr>
<tr>
<td></td>
<td>> 6' TO 9'</td>
<td></td>
<td>C</td>
<td>J OR K</td>
</tr>
<tr>
<td></td>
<td>> 6' TO 12'</td>
<td></td>
<td>D</td>
<td>L</td>
</tr>
<tr>
<td>>30' TO 40'</td>
<td>0' TO 6'</td>
<td>1067</td>
<td>C</td>
<td>H OR K</td>
</tr>
<tr>
<td></td>
<td>> 6' TO 9'</td>
<td></td>
<td>D</td>
<td>J OR K</td>
</tr>
<tr>
<td></td>
<td>> 6' TO 12'</td>
<td></td>
<td>E</td>
<td>L</td>
</tr>
<tr>
<td>>40' TO 50'</td>
<td>0' TO 6'</td>
<td>1292</td>
<td>C</td>
<td>J OR K</td>
</tr>
<tr>
<td></td>
<td>> 6' TO 9'</td>
<td></td>
<td>D</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td>> 6' TO 12'</td>
<td></td>
<td>E</td>
<td>L</td>
</tr>
<tr>
<td>>50' TO 60'</td>
<td>0' TO 6'</td>
<td>1517</td>
<td>C</td>
<td>J OR K</td>
</tr>
<tr>
<td></td>
<td>> 6' TO 9'</td>
<td></td>
<td>E</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>> 6' TO 12'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>60' TO 70'</td>
<td>0' TO 6'</td>
<td>1742</td>
<td>D</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td>> 6' TO 9'</td>
<td></td>
<td>E</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>> 6' TO 12'</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>>70' TO 80'</td>
<td>0' TO 6'</td>
<td>1967</td>
<td>D</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td>> 6' TO 9'</td>
<td></td>
<td></td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>> 6' TO 12'</td>
<td></td>
<td></td>
<td>M</td>
</tr>
</tbody>
</table>

Note:
1. Must maintain continuity of bond beam.
2. Lintel types referenced are similar to 8" lintels (90.8) except the beam width is 6".
3. If masonry opening exceeds scheduled vertical reinforcement spacing, then lintel, bond beam and wall above opening shall be filled solid over opening width.
4. If the cast in place beam requires stirrups, then use 8" CMU interior wall.
5. The truss span equals the sum of the spans on both sides of the interior wall.
TRUSS ANCHOR LOAD SCHEDULE, LBS.

<table>
<thead>
<tr>
<th>ROOF TRUSS SPAN</th>
<th>NET UPLIFT INTERIOR ZONE</th>
<th>NET UPLIFT END ZONE (WITHIN 8' OF CORNER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0' TO 20'</td>
<td>195</td>
<td>324</td>
</tr>
<tr>
<td>>20' TO 30'</td>
<td>262</td>
<td>456</td>
</tr>
<tr>
<td>>30' TO 40'</td>
<td>330</td>
<td>588</td>
</tr>
</tbody>
</table>

NOTES: 1. FOR NO.1 HIP, CORNER JACKS AND END JACKS OF HIP ROOFS, USE TRUSS MANUFACTURERS LOADS OR SSTD 10. FOR GIRDER TRUSSES, USE TRUSS MANUFACTURERS LOADS.
2. FOR END JACKS, THE SIDEWALL LOADS AS DETERMINED BY THIS DOCUMENT MAY ALSO BE USED.
ENTRY CONDITION DETAILS

ENTRY PLAN

FILLED CELL

MAIN TRUSS BRG. ELEV. = 10'-0" MAX. ABOVE FLOOR

ENTRY TRUSS BRG. ELEV. = 12'-0" MAX. ABOVE FLOOR

8'-0" MAX. 2'-0"
MAX. OVERHANG

TRUSS ANCHOR
UPLIFT CAPACITY = 165# EXCEPT AT GIRDER

TOP OF BEAM = 1'-12'-0" MAX. ABOVE FLOOR

8'x16' CONCRETE BEAM W/2#5 BARS TOP AND BOTTOM
WITH #3 TIES @ 8' O/C OR PRE-ENGINEERED ASSEMBLY

STANDARD HOOK
1#5 BAR FROM POST INTO BOND BEAM

1 E1

MASONRY POST AT ENTRY

2 E1

PERIMETER BEAM FOR ENTRY

GUIDE TO CONCRETE MASONRY RESIDENTIAL CONSTRUCTION IN HIGH WIND AREAS. 1997

90.15
NOTE: SHEATHING MAY BE PROVIDED BETWEEN MAIN ROOF TRUSSES AND VALLEY SET TRUSSES.

THIS DETAIL APPLIES TO PRIMARY ROOF PLANES
SHEATHING NOTES:

ROOF SHEATHING TO BE WOOD STRUCTURAL PANEL RATED SHEATHING OR BETTER, EXPOSURE 1.

ROOF SHEATHING SHALL BE 7/16" THICKNESS OR GREATER.

ROOF TRUSSES @ 24" O/C MAXIMUM.

TRUSS TOP CHORDS SHALL HAVE A SPECIFIC GRAVITY OF G=0.46 OR GREATER.

NAILING PATTERN:

<table>
<thead>
<tr>
<th>ZONE</th>
<th>SPACING</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12" O/C MAX. IN FIELD, 6" O/C MAX PANEL EDGES.</td>
</tr>
<tr>
<td>2</td>
<td>6" O/C MAX. IN FIELD & AT EDGES.</td>
</tr>
</tbody>
</table>

NAILS SHALL BE: 8d COMMON FOR 7/16" & 15/32", 10d COMMON FOR 1/2", 19/32", AND 5/8".

SEE ALSO SHEETS 90.7, 90.11, 90.18, 90.19, AND 90.20. FOR GABLE END REQUIREMENTS.
ALTERNATE GABLE END DETAIL

GUIDE TO CONCRETE MASONRY RESIDENTIAL CONSTRUCTION IN HIGH WIND AREAS 1997

90.18
LEGEND KEY #
(SEE SHEET 90.18)

8 OR PROPRIETARY ANCHOR
RATED FOR 1350 LBS UPLIFT
AND 475 LBS SHEAR PARALLEL
TO WALL.

TYPE "A" OR "B" BOND BEAM
AS DETERMINED IN TABLE 90.3

DETAIL G1
ALTERNATE GABLE END DETAIL

DETAIL G2

2x LADDER FRAMING @ 2'-0" O/C MAX.

LEGEND KEY # (SEE SHEET 90.18)

DETAIL G3

ROOF TRUSSES @ 24" O/C MAX.

GUIDE TO CONCRETE MASONRY RESIDENTIAL CONSTRUCTION IN HIGH WIND AREAS. 1997
GUIDE TO CONCRETE MASONRY RESIDENTIAL CONSTRUCTION IN HIGH WIND AREAS
100 MPH DESIGN WIND SPEED VELOCITY

100.1 Table of Contents - 100 mph Design Wind Velocity
100.2 Vertical Reinforcement Details
100.3 Vertical Reinforcement Spacing
100.4 Gable Endwall Vertical Reinforcement
100.5 Shearwall Design Notes
100.6 Shearwall Proportioning Example
100.7 Shearwall Design Table
100.8 Lintel Types
100.9 Lintel Types - Continued
100.10 Lintel Schedule
100.11 Gable Endwall Details
100.12 Interior Bearing Wall Detail
100.13 Interior Bearing Wall Openings
100.14 Roof Truss Anchor
100.15 Entry Condition Details
100.16 Valley / Hip Detail
100.17 Roof Sheathing Attachment
100.18 Alternate Gable End Detail
100.19 Alternate Gable End Detail - Cont.
100.20 Alternate Gable End Detail - Cont.
VERTICAL REINFORCEMENT DETAILS

100 MPH WIND AREA

STEMWALL FOOTING DETAILS, SEE PG. 1.11

PER SSD 10 WITH DESIGN CONSIDERATIONS FOR SITE SPECIFIC CONDITIONS.

6" MIN. EMBEDMENT

STANDARD HOOK

BOND BEAM

3' MIN. COVER

V. REINF. IN GROUTED CELL

EMBED 5' FOR 8' DEEP FOOTING, 6' MIN. FOR ALL OTHER FOOTINGS

FOOTING

REINFORCING

STANDARD HOOK

CLEANOUT REQ'D FOR GROUT LIFT >5 FT.

GUIDE TO CONCRETE MASONRY RESIDENTIAL CONSTRUCTION IN HIGH WIND AREAS. 1997
Vertical Reinforcement Spacing

Maximum Spacing of #5 Bar in Filled Cells

<table>
<thead>
<tr>
<th>Ceiling Height</th>
<th>Bond Beam</th>
<th>Span 0'-20'</th>
<th>Span >20' to 30'</th>
<th>Span >30' to 40'</th>
</tr>
</thead>
<tbody>
<tr>
<td>8'-0' or less</td>
<td>A</td>
<td>12'-0'</td>
<td>12'-0'</td>
<td>10'-0'</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>12'-0'</td>
<td>12'-0'</td>
<td>12'-0'</td>
</tr>
<tr>
<td>8'-8'</td>
<td>A</td>
<td>10'-8'</td>
<td>10'-8'</td>
<td>10'-8'</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>10'-8'</td>
<td>10'-8'</td>
<td>10'-8'</td>
</tr>
<tr>
<td>9'-4'</td>
<td>A</td>
<td>8'-8'</td>
<td>8'-8'</td>
<td>8'-8'</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>8'-8'</td>
<td>8'-8'</td>
<td>8'-8'</td>
</tr>
<tr>
<td>10'-0'</td>
<td>A</td>
<td>8'-0'</td>
<td>8'-0'</td>
<td>8'-0'</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>8'-0'</td>
<td>8'-0'</td>
<td>8'-0'</td>
</tr>
</tbody>
</table>

Note:
1. Provide one #5 bar in grouted cell at all wall corners and intersections.
2. Provide 1 #5 bar in grouted cell at each side of openings wider than 6'-0' and at each end of shearwall segments. Provide 2 #5 bars on each side of openings wider than 12'-0'.
3. Provide one #5 bar in grouted cell at all locations where girders or girder trusses bear on the masonry wall.
4. Redistribute vertical reinforcement above openings to each side of opening. Provide ½ of the reinforcement interrupted by the opening or the amount required in Note 2, whichever is greater, on each side of the opening.
5. See pg. 1.11 for description of bond beam types 'A' and 'B'.
CONTINUOUS MASONRY GABLE END WALL VERTICAL REINFORCEMENT

MEAN ROOF HEIGHT = \frac{CEILING HEIGHT + MAX. GABLE HEIGHT}{2}

TO DETERMINE THE VERTICAL SPACING REQUIRED FOR CONTINUOUS MASONRY GABLE WALLS, USE ONE OF THE FOLLOWING METHODS:

METHOD 1.) DETERMINE THE MEAN ROOF HEIGHT OF THE GABLE END WALL AND USE THAT WALL HEIGHT IN THE TABLE BELOW TO OBTAIN THE VERTICAL REINFORCEMENT SPACING FOR THE ENTIRE WALL.

METHOD 2.) DIVIDE THE GABLE WALL INTO SEGMENTS AND VARY THE VERTICAL SPACING BASED ON THE AVERAGE WALL HEIGHT IN EACH SEGMENT.

<table>
<thead>
<tr>
<th>MAXIMUM SPACING OF 1#5 IN FILLED CELLS</th>
<th>8'-0"</th>
<th>4'-8"</th>
<th>2'-8"</th>
<th>2'-0"</th>
<th>0'-8"</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEIGHT (EITHER BY METHOD 1 OR BY METHOD 2)</td>
<td>8'-10"</td>
<td>>10'-13"</td>
<td>>13'-16"</td>
<td>>16'-19"</td>
<td>>19'-22"</td>
</tr>
</tbody>
</table>

GUIDE TO CONCRETE MASONRY RESIDENTIAL CONSTRUCTION IN HIGH WIND AREAS, 1997
NOTES ON SHEARWALL LENGTH DESIGN

1.) MINIMUM SHEARWALL SEGMENT LENGTH SHALL BE 2'-0'.
 FILLED CELL WITH 1#5 BAR REQUIRED AT EACH END OF SHEARWALL SEGMENT.
2.) PORTIONS OF WALLS WITH OPENINGS SHALL NOT BE CONSIDERED PART OF THE SHEARWALL LENGTH.
3.) THE CUMULATIVE SHEARWALL LENGTH FOR EACH SIDE OF THE BUILDING MUST BE EQUAL TO OR GREATER THAN THE TABULATED SHEARWALL LENGTH REQUIRED.

* DOES NOT HAVE TO BE CONTINUOUS, AS LONG AS TOTAL LENGTH OF SEPARATE SEGMENTS MEETS THE SHEARWALL LENGTH REQUIREMENTS.
SHEARWALL PROPORTIONING EXAMPLE

For shearwall proportioning, divide the building into two rectangular buildings: 40'x50' main building, and 20'x20' leg.

WIND 'A'
To determine the amount of shearwall required in 1, 3, and 5, the "windward main building dimension" is 50'. Per the table on 100.4, the required shearwall length is 1'-10". However, the minimum shearwall segment length is 2'-0". Therefore provide a 2'-0" segment in 1 and a 2'-0" segment in 3. 5 does not have a shearwall requirement because the windward building area of the main building was not increased by the leg.

WIND 'B'
To determine the amount of shearwall required in 2, 4 and 6, the length required in 2 and the main building portion of 6 is based upon 40' for a gable end. The length required for 4 and the leg portion of 6 is based upon 20'. The shearwall length in 6 shall be equal to the sum of 2 and 4. For this example, 2 requires 2'-5", 4 requires 0'-6" (2'-0' min.) and 6 requires 2'-11" (2'-5' + 0'-6').
100 MPH Wind Area

Required Shearwall Length (2:12 to 7:12 Roof Slope)

<table>
<thead>
<tr>
<th>Windward Building Dimension</th>
<th>Shearwall Length Required (Each Side) of Building (Except Gable End Winds)</th>
<th>Shearwall Length Required (Each Side) of Building Perpendicular to Gable End</th>
</tr>
</thead>
<tbody>
<tr>
<td>10' to 20'</td>
<td>0'-6' *</td>
<td>0'-8' *</td>
</tr>
<tr>
<td>>20' to 30'</td>
<td>0'-11' *</td>
<td>1'-6' *</td>
</tr>
<tr>
<td>>30' to 40'</td>
<td>1'-5' *</td>
<td>2'-5'</td>
</tr>
<tr>
<td>>40' to 50'</td>
<td>1'-10' *</td>
<td></td>
</tr>
<tr>
<td>>50' to 60'</td>
<td>2'-3'</td>
<td></td>
</tr>
<tr>
<td>>60' to 70'</td>
<td>2'-8'</td>
<td></td>
</tr>
<tr>
<td>>70' to 80'</td>
<td>3'-1'</td>
<td></td>
</tr>
</tbody>
</table>

* 2'-0' Minimum Shearwall Segment Length

Note: Maximum Shearwall Pier Height = 6'-0" for 2'-0" length. A maximum shearwall pier height of 8'-8" is allowed for shearwall lengths of 2'-8" or greater.
LINTEL TYPES

<table>
<thead>
<tr>
<th>'A2'</th>
<th>8x8 Masonry Lintel W/1#5 Bottom Filled Solid with Grout</th>
</tr>
</thead>
<tbody>
<tr>
<td>'B2'</td>
<td>8x16 Masonry Lintel W/1#5 Bottom Filled Solid with Grout</td>
</tr>
<tr>
<td>'B3'</td>
<td>8x16 Masonry Lintel W/2#5 Bottom Filled Solid with Grout</td>
</tr>
<tr>
<td>'C'</td>
<td>8x24 Masonry Lintel W/1#5 Bottom Filled Solid with Grout</td>
</tr>
<tr>
<td>'C2'</td>
<td>8x24 Masonry Lintel W/2#5 Bottom Filled Solid with Grout</td>
</tr>
<tr>
<td>'D'</td>
<td>8x32 Masonry Lintel W/2#5 Bottom Filled Solid with Grout</td>
</tr>
<tr>
<td>'D2'</td>
<td>8x32 Masonry Lintel W/3#5 Bottom Filled Solid with Grout</td>
</tr>
<tr>
<td>'E'</td>
<td>8x40 Masonry Lintel W/3#5 Bottom Filled Solid with Grout</td>
</tr>
</tbody>
</table>

GUIDE TO CONCRETE MASONRY RESIDENTIAL CONSTRUCTION IN HIGH WIND AREAS. 1997
<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>'F'</td>
<td>8x8 Cast in Place Concrete Beam (2500 PSI) with 1#5 Bottom</td>
<td></td>
</tr>
<tr>
<td>'G'</td>
<td>8x16 Cast in Place Concrete Beam (2500 PSI) with 2#5 Bottom</td>
<td></td>
</tr>
<tr>
<td>'H'</td>
<td>8x24 Cast in Place Concrete Beam (2500 PSI) with 2#5 Bottom</td>
<td></td>
</tr>
<tr>
<td>'J'</td>
<td>8x32 Cast in Place Concrete Beam (2500 PSI) with 2#7 Bottom</td>
<td></td>
</tr>
<tr>
<td>'K'</td>
<td>8x16 Cast in Place Concrete Beam (2500 PSI)</td>
<td>2#5</td>
</tr>
<tr>
<td></td>
<td>#3 Stirrups @7' O/C</td>
<td></td>
</tr>
<tr>
<td>'L'</td>
<td>8x24 Cast in Place Concrete Beam (2500 PSI)</td>
<td>2#6</td>
</tr>
<tr>
<td></td>
<td>#3 Stirrups @11' O/C</td>
<td></td>
</tr>
<tr>
<td>'M'</td>
<td>8x32 Cast in Place Concrete Beam (2500 PSI)</td>
<td>4#6</td>
</tr>
<tr>
<td></td>
<td>#3 Stirrups @15' O/C</td>
<td></td>
</tr>
<tr>
<td>MAX. CLEAR OPENING WIDTH</td>
<td>ROOF TRUSS SPAN</td>
<td>PRECAST LINTEL ALLOWABLE LOAD (PLF) (3)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>UP TO 3'-0'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0' TO 20'</td>
<td></td>
<td>650</td>
</tr>
<tr>
<td>>20' TO 30'</td>
<td></td>
<td>875</td>
</tr>
<tr>
<td>>30' TO 40'</td>
<td></td>
<td>1,100</td>
</tr>
<tr>
<td>>3'-0' TO 6'-0'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0' TO 20'</td>
<td></td>
<td>650</td>
</tr>
<tr>
<td>>20' TO 30'</td>
<td></td>
<td>875</td>
</tr>
<tr>
<td>>30' TO 40'</td>
<td></td>
<td>1,100</td>
</tr>
<tr>
<td>>6'-0' TO 9'-0'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0' TO 20'</td>
<td></td>
<td>650</td>
</tr>
<tr>
<td>>20' TO 30'</td>
<td></td>
<td>875</td>
</tr>
<tr>
<td>>30' TO 40'</td>
<td></td>
<td>1,100</td>
</tr>
<tr>
<td>>9'-0' TO 12'-0'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0' TO 20'</td>
<td></td>
<td>650</td>
</tr>
<tr>
<td>>20' TO 30'</td>
<td></td>
<td>875</td>
</tr>
<tr>
<td>>30' TO 40'</td>
<td></td>
<td>1,100</td>
</tr>
<tr>
<td>>12'-0' TO 15'-0'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0' TO 20'</td>
<td></td>
<td>650</td>
</tr>
<tr>
<td>>20' TO 30'</td>
<td></td>
<td>875</td>
</tr>
<tr>
<td>>30' TO 40'</td>
<td></td>
<td>1,100</td>
</tr>
<tr>
<td>>15'-0' TO 18'-0'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0' TO 20'</td>
<td></td>
<td>650</td>
</tr>
<tr>
<td>>20' TO 30'</td>
<td></td>
<td>875</td>
</tr>
<tr>
<td>>30' TO 40'</td>
<td></td>
<td>1,100</td>
</tr>
</tbody>
</table>

NOTE:
1. MUST MAINTAIN CONTINUITY OF BOND BEAM AT TOP OF WALL.
2. IF MASONRY OPENING EXCEEDS SCHEDULED VERTICAL REINFORCEMENT SPACING, THEN LINTEL, BOND BEAM AND WALL ABOVE OPENING SHALL BE FILLED SOLID OVER OPENING WIDTH.
3. RATED CAPACITY OF PRECAST LINTEL BY ITSELF OR THROUGH COMPOSITE ACTION WITH OTHER ELEMENTS.
GABLE END WALL DETAILS

2x4 P.T. @ 2'-0' O/C MAX.

ROOF SHEATHING

UPLIFT = 360#
SHEAR = 290#

UPLIFT = 180#
DOWNLOAD = 90#

2'-0' MAX.
OVERHANG

GABLE END
RAKED CONCRETE BOND BEAM OR CUT MASONRY BOND BEAM

MASONRY WALL

WOOD ROOF TRUSS

8' RAKED CONCRETE BEAM WITH 1#5 TOP
MINIMUM DEPTH = 8'
OR
CUT MASONRY BOND BEAM WITH 1#5 BAR
MINIMUM DEPTH = 8'

VARIES CUT CMU TO MATCH SLOPE (8' MIN.)

MAINTAIN 1 COURSE WITH 1#5 TOP CONTIN.
STANDARD HOOK WITH 25' LAP (TYP.)

NOTCH WEBS 2¾' FOR REINF.

GROUT STOP

CONCRETE SCREWS OR OTHER FASTENING SYSTEM @12' O/C RATED FOR 180# PULLOUT AND 145# SHEAR.

SEPARATION STRIP

ALTERNATE CUT MASONRY BOND BEAM

MASONRY WALL

8' RAKED CONCRETE BEAM WITH 1#5 TOP
MINIMUM DEPTH = 8'
OR
CUT MASONRY BOND BEAM WITH 1#5 BAR
MINIMUM DEPTH = 8'

WOOD ROOF TRUSS

GUIDE TO CONCRETE MASONRY RESIDENTIAL CONSTRUCTION IN HIGH WIND AREAS. 1997
INTERIOR BEARING WALL DETAIL

- ENGINEERED WOOD ROOF TRUSSES, DESIGNED FOR INTERIOR BEARING
- STANDARD HOOK (25' MIN. LAP)
- 6' CMU (MIN.)
- 25' MINIMUM LAP
- * PER SSD 10 WITH DESIGN CONSIDERATIONS FOR SITE SPECIFIC CONDITIONS.

Table: Roof Truss Anchor Net Uplift (Lbs) vs. Max. Spacing of #5 Bar in Filled Cell

<table>
<thead>
<tr>
<th>Span</th>
<th>Roof Truss Anchor Net Uplift (Lbs) (Trusses @ 24")</th>
<th>Max. Spacing of #5 Bar in Filled Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>End Zone (Trusses 8" or Closer to Outside of Endwall)</td>
<td>Bond Beam 'A' (6x8)</td>
</tr>
<tr>
<td></td>
<td>Interior Zone</td>
<td>164</td>
</tr>
<tr>
<td>10'</td>
<td>94</td>
<td>164</td>
</tr>
<tr>
<td>20'</td>
<td>188</td>
<td>328</td>
</tr>
<tr>
<td>30'</td>
<td>282</td>
<td>492</td>
</tr>
<tr>
<td>40'</td>
<td>376</td>
<td>656</td>
</tr>
<tr>
<td>50'</td>
<td>470</td>
<td>820</td>
</tr>
<tr>
<td>60'</td>
<td>564</td>
<td>984</td>
</tr>
<tr>
<td>70'</td>
<td>658</td>
<td>1148</td>
</tr>
<tr>
<td>80'</td>
<td>752</td>
<td>1312</td>
</tr>
</tbody>
</table>

Note:
1. PROVIDE ONE #5 BAR IN GROUTED CELL AT CORNERS AND INTERSECTIONS.
2. PROVIDE 1 #5 BAR IN GROUTED CELL AT EACH SIDE OF OPENINGS WIDER THAN 6'-0" AND 2 #5 BARS ON EACH SIDE OF OPENINGS WIDER THAN 12'-0".
3. PROVIDE ONE #5 BAR IN GROUTED CELL AT ALL LOCATIONS WHERE GIRDERS OR GIRDER TRUSSES BEAR ON THE MASONRY WALL.
4. INTERIOR BEARING WALLS MAY BE CONSTRUCTED OF ALTERNATE MATERIALS IN ACCORDANCE WITH ACCEPTED STANDARDS.

GUIDE TO CONCRETE MASONRY RESIDENTIAL CONSTRUCTION IN HIGH WIND AREAS, 1997
Lintel Schedule for 6" CMU Interior Walls

<table>
<thead>
<tr>
<th>Truss Span (ft)</th>
<th>Opening Width</th>
<th>Precast Lintel Allowable Load (PLF)</th>
<th>Masonry Lintel</th>
<th>Cast in Place Beams</th>
</tr>
</thead>
<tbody>
<tr>
<td>0' to 20'</td>
<td>0' to 6'</td>
<td>617</td>
<td>B2</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>> 6' to 9'</td>
<td></td>
<td>B3</td>
<td>H or K</td>
</tr>
<tr>
<td></td>
<td>> 6' to 12'</td>
<td></td>
<td>C2</td>
<td>J or L</td>
</tr>
<tr>
<td>>20' to 30'</td>
<td>0' to 6'</td>
<td>842</td>
<td>B2</td>
<td>H or K</td>
</tr>
<tr>
<td></td>
<td>> 6' to 9'</td>
<td></td>
<td>C</td>
<td>J or K</td>
</tr>
<tr>
<td></td>
<td>> 6' to 12'</td>
<td></td>
<td>D</td>
<td>L</td>
</tr>
<tr>
<td>>30' to 40'</td>
<td>0' to 6'</td>
<td>1067</td>
<td>C</td>
<td>H or K</td>
</tr>
<tr>
<td></td>
<td>> 6' to 9'</td>
<td></td>
<td>D</td>
<td>J or K</td>
</tr>
<tr>
<td></td>
<td>> 6' to 12'</td>
<td></td>
<td>E</td>
<td>L</td>
</tr>
<tr>
<td>>40' to 50'</td>
<td>0' to 6'</td>
<td>1292</td>
<td>C</td>
<td>J or K</td>
</tr>
<tr>
<td></td>
<td>> 6' to 9'</td>
<td></td>
<td>D</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td>> 6' to 12'</td>
<td></td>
<td>E</td>
<td>L</td>
</tr>
<tr>
<td>>50' to 60'</td>
<td>0' to 6'</td>
<td>1517</td>
<td>C</td>
<td>J or K</td>
</tr>
<tr>
<td></td>
<td>> 6' to 9'</td>
<td></td>
<td>E</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>> 6' to 12'</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>>60' to 70'</td>
<td>0' to 6'</td>
<td>1742</td>
<td>D</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td>> 6' to 9'</td>
<td></td>
<td>E</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>> 6' to 12'</td>
<td></td>
<td>-</td>
<td>M</td>
</tr>
<tr>
<td>>70' to 80'</td>
<td>0' to 6'</td>
<td>1967</td>
<td>D</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td>> 6' to 9'</td>
<td></td>
<td>-</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>> 6' to 12'</td>
<td></td>
<td>-</td>
<td>M</td>
</tr>
</tbody>
</table>

Note:
1. Must maintain continuity of bond beam.
2. Lintel types referenced are similar to 8" lintels (100.8) except the beam width is 6".
3. If masonry opening exceeds scheduled vertical reinforcement spacing, then lintel, bond beam and wall above opening shall be filled solid over opening width.
4. If the cast in place beam requires stirrups, than use 8" CMU interior wall.
5. The truss span equals the sum of the spans on both sides of the interior wall.

Guide to Concrete Masonry Residential Construction in High Wind Areas, 1997.
Roof Truss Anchor Load Schedule, Lbs.

<table>
<thead>
<tr>
<th>Roof Truss Span</th>
<th>Net Uplift Interior Zone</th>
<th>Net Uplift End Zone (within 8' of corner)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0' to 20'</td>
<td>293</td>
<td>452</td>
</tr>
<tr>
<td>>20' to 30'</td>
<td>398</td>
<td>637</td>
</tr>
<tr>
<td>>30' to 40'</td>
<td>503</td>
<td>822</td>
</tr>
</tbody>
</table>

Notes:
1. For No.1 Hip, Corner Jacks and End Jacks of Hip Roofs, use Truss Manufacturers Loads or SSTD 10. For Girders Trusses, use Truss Manufacturers Loads.
2. For End Jacks, the sidewall loads as determined by this document may also be used.

Guide to Concrete Masonry Residential Construction in High Wind Areas. 1997
ENTRY CONDITION DETAILS

ENTRY PLAN

FILLED CELL

MAIN TRUSS BRG. ELEV. =
10'-0'' MAX. ABOVE FLOOR

ENTRY TRUSS BRG. ELEV. =
12'-0'' MAX. ABOVE FLOOR

8'-0'' MAX. OVERHANG

2'-0'' MAX. O/C MAX.

TRUSS ANCHOR
UPLIFT CAPACITY = 230# EXCEPT AT GIRDER

TOP OF BEAM = 12'-0'' MAX. ABOVE FLOOR

8'x16' CONCRETE BEAM W/2#5 BARS
TOP AND BOTTOM
WITH #3 TIES @ 8'' O/C OR PRE-ENGINEERED ASSEMBLY

STANDARD HOOK
1#5 BAR FROM POST INTO BOND BEAM

(4)#5 VERTICAL IN FILLED CELLS

1
E1 MASONRY POST AT ENTRY

2
E1 PERIMETER BEAM FOR ENTRY

GUIDE TO CONCRETE MASONRY RESIDENTIAL
CONSTRUCTION IN HIGH WIND AREAS. 1997

100.15
NOTE: SHEATHING MAY BE PROVIDED BETWEEN MAIN ROOF TRUSSES AND VALLEY SET TRUSSES.

THIS DETAIL APPLIES TO PRIMARY ROOF PLANES
SHEATHING NOTES:

ROOF SHEATHING TO BE WOOD STRUCTURAL PANEL RATED SHEATHING OR BETTER, EXPOSURE 1.

ROOF SHEATHING SHALL BE 7/16" THICKNESS OR GREATER.

ROOF TRUSSES @ 24" O/C MAXIMUM.

TRUSS TOP CHORDS SHALL HAVE A SPECIFIC GRAVITY OF G=0.46 OR GREATER.

NAILING PATTERN:

<table>
<thead>
<tr>
<th>ZONE</th>
<th>SPACING</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12" O/C MAX. IN FIELD, 6" O/C MAX PANEL EDGES.</td>
</tr>
<tr>
<td>2</td>
<td>6" O/C MAX. IN FIELD & AT EDGES.</td>
</tr>
</tbody>
</table>

NAILS SHALL BE: 8d COMMON FOR 7/16" & 15/32",
10d COMMON FOR 1/2", 19/32", AND 5/8".

SEE ALSO SHEETS 100.7, 100.11, 100.18, 100.19, AND 100.20. FOR GABLE END REQUIREMENTS.
ALTERNATE GABLE END DETAIL

LEGEND KEY # (TYP. THIS SHEET)

PRE-ENGINEERED ROOF TRUSS #24 O/C

(2) 8d TOE NAIL INTO BRACE

GUIDE TO CONCRETE MASONRY RESIDENTIAL CONSTRUCTION IN HIGH WIND AREAS, 1997
8'

LEGEND KEY #
(SEE SHEET 100.18)

8

OR PROPRIETARY ANCHOR RATED FOR 1360 LBS UPLIFT AND 475 LBS SHEAR PARALLEL TO WALL.

TYPE "A" OR "B" BOND BEAM AS DETERMINED IN TABLE 100.3

DETAIL G1

GUIDE TO CONCRETE MASONRY RESIDENTIAL CONSTRUCTION IN HIGH WIND AREAS. 1997.
ALTERNATE GABLE END DETAIL

DETAIL G2

DETAIL G3

GUIDE TO CONCRETE MASONRY RESIDENTIAL CONSTRUCTION IN HIGH WIND AREAS. 1997
GUIDE TO CONCRETE MASONRY RESIDENTIAL CONSTRUCTION IN HIGH WIND AREAS
110 MPH DESIGN WIND SPEED VELOCITY

110.1 Table of Contents - 110 mph Design Wind Velocity
110.2 Vertical Reinforcement Details
110.3 Vertical Reinforcement Spacing
110.4 Gable Endwall Vertical Reinforcement
110.5 Shearwall Design Notes
110.6 Shearwall Proportioning Example
110.7 Shearwall Design Table
110.8 Lintel Types
110.9 Lintel Types - Continued
110.10 Lintel Schedule
110.11 Gable Endwall Details
110.12 Interior Bearing Wall Detail
110.13 Interior Bearing Wall Openings
110.14 Roof Truss Anchor
110.15 Entry Condition Details
110.16 Valley / Hip Detail
110.17 Roof Sheathing Attachment
110.18 Alternate Gable End Detail
110.19 Alternate Gable End Detail - Cont.
110.20 Alternate Gable End Detail - Cont.
VT RREINFORCEMENT DETAILS

110 MPH WIND AREA

STEMWALL FOOTING DETAILS, SEE PG. 1.11

PER SST6 10 WITH DESIGN CONSIDERATIONS FOR SITE SPECIFIC CONDITIONS.

EMBED 5' FOR 8' DEEP FOOTING, 6' MIN. FOR ALL OTHER FOOTINGS

FOOTING

REINFORCING

STANDARD HOOK

110.2
Maximum Spacing of #5 Bar in Filled Cells

<table>
<thead>
<tr>
<th>Ceiling Height</th>
<th>Bond Beam</th>
<th>Span 0'-20'</th>
<th>Span 20' to 30'</th>
<th>Span 30' to 40'</th>
</tr>
</thead>
<tbody>
<tr>
<td>8'-0' or Less</td>
<td>A</td>
<td>10'-0'</td>
<td>9'-4'</td>
<td>8'-0'</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>10'-0'</td>
<td>10'-0'</td>
<td>10'-0'</td>
</tr>
<tr>
<td>8'-8'</td>
<td>A</td>
<td>8'-8'</td>
<td>8'-8'</td>
<td>8'-0'</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>8'-8'</td>
<td>8'-8'</td>
<td>8'-8'</td>
</tr>
<tr>
<td>9'-4'</td>
<td>A</td>
<td>7'-4'</td>
<td>7'-4'</td>
<td>7'-4'</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>7'-4'</td>
<td>7'-4'</td>
<td>7'-4'</td>
</tr>
<tr>
<td>10'-0'</td>
<td>A</td>
<td>6'-8'</td>
<td>6'-8'</td>
<td>6'-8'</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>6'-8'</td>
<td>6'-8'</td>
<td>6'-8'</td>
</tr>
</tbody>
</table>

Note:

1. Provide one #5 bar in grouted cell at all wall corners and intersections.
2. Provide 1 #5 bar in grouted cell at each side of openings wider than 6'-0' and at each end of shearwall segments. Provide 2 #5 bars on each side of openings wider than 12'-0'.
3. Provide one #5 bar in grouted cell at all locations where girders or girder trusses bear on the masonry wall.
4. Redistribute vertical reinforcement above openings to each side of opening. Provide ½ of the reinforcement interrupted by the opening or the amount required in Note 2, whichever is greater, on each side of the opening.
5. See pg. 1.11 for description of bond beam types "A" and "B".
CONTINUOUS MASONRY GABLE END WALL VERTICAL REINFORCEMENT

\[
\text{MEAN ROOF HEIGHT} = \frac{\text{CEILING HEIGHT} + \text{MAX. GABLE HEIGHT}}{2}
\]

To determine the vertical spacing required for continuous masonry gable walls, use one of the following methods:

Method 1.) Determine the mean roof height of the gable end wall and use that wall height in the table below to obtain the vertical reinforcement spacing for the entire wall.

Method 2.) Divide the gable wall into segments and vary the vertical spacing based on the average wall height in each segment.

<table>
<thead>
<tr>
<th>Height (either by Method 1 or by Method 2)</th>
<th>8' TO 10'</th>
<th>> 10' TO 13'</th>
<th>> 13' TO 16'</th>
<th>> 16' TO 19'</th>
<th>> 19' TO 22'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum spacing of 1#5 in filled cells</td>
<td>6'-8'</td>
<td>3'-4'</td>
<td>2'-0'</td>
<td>1'-4'</td>
<td>0'-8'</td>
</tr>
</tbody>
</table>

.3 GUIDE TO CONCRETE MASONRY RESIDENTIAL CONSTRUCTION IN HIGH WIND AREAS. 1997 110.4
NOTES ON SHEARWALL LENGTH DESIGN

1.) Minimum shearwall segment length shall be 2'-0".
 Filled cell with #5 bar required at each end of shearwall segment.
2.) Portions of walls with openings shall not be considered part of the shearwall length.
3.) The cumulative shearwall length for each side of the building must
 be equal to or greater than the tabulated shearwall length required.

* Does not have to be continuous, as long as total
 length of separate segments meets the shearwall
 length requirements.
FOR SHEARWALL PROPORTIONING, DIVIDE THE BUILDING INTO TWO RECTANGULAR BUILDINGS: 40'x50' MAIN BUILDING, AND 20'x20' LEG.

WIND 'A'
TO DETERMINE THE AMOUNT OF SHEARWALL REQUIRED IN 1, 3 AND 5, THE "WINDWARD MAIN BUILDING DIMENSION" IS 50'. PER THE TABLE ON 110.4, THE REQUIRED SHEARWALL LENGTH IS 2'-4". THEREFORE PROVIDE A 2'-4" SEGMENT IN 1 AND 2'-4" SEGMENT IN 3. 5 DOES NOT HAVE A SHEARWALL REQUIREMENT BECAUSE THE WINDWARD BUILDING AREA OF THE MAIN BUILDING WAS NOT INCREASED BY THE LEG.

WIND 'B'
TO DETERMINE THE AMOUNT OF SHEARWALL REQUIRED IN 2, 4 AND 6, THE LENGTH REQUIRED IN 2 AND THE MAIN BUILDING PORTION OF 6 IS BASED UPON 40' FOR A GABLE END. THE LENGTH REQUIRED FOR 4 AND THE LEG PORTION OF 6 IS BASED UPON 20'. THE SHEARWALL LENGTH IN 6 SHALL BE EQUAL TO THE SUM OF 2 AND 4. FOR THIS EXAMPLE, 2 Requires 3'-0", 4 Requires 0'-9" (2'-0" MIN.) AND 6 Requires 3'-9" (3'-0" + 0'-9").

GUIDE TO CONCRETE MASONRY RESIDENTIAL CONSTRUCTION IN HIGH WIND AREAS. 1997 110.6
110 MPH Wind Area

Required Shearwall Length (2:12 to 7:12 Roof Slope)

<table>
<thead>
<tr>
<th>Windward Building Dimension</th>
<th>Shearwall Length Required (Each Side) of Building (Except Gable End Winds)</th>
<th>Shearwall Length Required (Each Side) of Building Perpendicular to Gable End</th>
</tr>
</thead>
<tbody>
<tr>
<td>10' to 20'</td>
<td>0'-9' *</td>
<td>0'-11' *</td>
</tr>
<tr>
<td>>20' to 30'</td>
<td>0'-3' *</td>
<td>1'-11' *</td>
</tr>
<tr>
<td>>30' to 40'</td>
<td>1'-9' *</td>
<td>3'-0'</td>
</tr>
<tr>
<td>>40' to 50'</td>
<td>2'-4'</td>
<td></td>
</tr>
<tr>
<td>>50' to 60'</td>
<td>2'-10'</td>
<td></td>
</tr>
<tr>
<td>>60' to 70'</td>
<td>3'-4'</td>
<td></td>
</tr>
<tr>
<td>>70' to 80'</td>
<td>3'-10'</td>
<td></td>
</tr>
</tbody>
</table>

* 2'-0' Minimum Shearwall Segment Length

Note: Maximum Shearwall Pier Height = 6'-0' for 2'-0' Length. A maximum Shearwall Pier Height of 8'-8' is allowed for Shearwall Lengths of 2'-8' or greater.

Guide to Concrete Masonry Residential Construction in High Wind Areas, 1997
LINTEL TYPES

8x8 Masonry lintel w/1#5 bottom filled solid with grout

8x16 Masonry lintel w/1#5 bottom filled solid with grout

8x24 Masonry lintel w/1#5 bottom filled solid with grout

8x32 Masonry lintel w/2#5 bottom filled solid with grout

8x32 Masonry lintel w/3#5 bottom filled solid with grout

8x40 Masonry lintel w/3#5 bottom filled solid with grout
LINTEL TYPES

8x8 CAST IN PLACE CONCRETE BEAM (2500 PSI) WITH 1#5 BOTTOM

8x16 CAST IN PLACE CONCRETE BEAM (2500 PSI) WITH 2#5 BOTTOM

8x24 CAST IN PLACE CONCRETE BEAM (2500 PSI) WITH 2#6 BOTTOM

8x32 CAST IN PLACE CONCRETE BEAM (2500 PSI) WITH 2#7 BOTTOM

2#5

#3 STIRRUPS @7" O/C

2#5

8x16 CAST IN PLACE CONCRETE BEAM (2500 PSI)

2#5

#3 STIRRUPS @11" O/C

2#6

8x24 CAST IN PLACE CONCRETE BEAM (2500 PSI)

2#5

#3 STIRRUPS @15" O/C

4#6

8x32 CAST IN PLACE CONCRETE BEAM (2500 PSI)
Lintel Schedule

<table>
<thead>
<tr>
<th>Max. Clear Opening Width</th>
<th>Roof Truss Span</th>
<th>Precast Lintel Allowable Load (PLF)</th>
<th>Masonry Lintel</th>
<th>Cast in Place Beams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 3'-0"</td>
<td>0' TO 20'</td>
<td>650</td>
<td>A2</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>>20' TO 30'</td>
<td>875</td>
<td>A2</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>>30' TO 40'</td>
<td>1,100</td>
<td>A2</td>
<td>G</td>
</tr>
<tr>
<td>>3'-0" TO 6'-0"</td>
<td>0' TO 20'</td>
<td>650</td>
<td>B2</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>>20' TO 30'</td>
<td>875</td>
<td>B2</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>>30' TO 40'</td>
<td>1,100</td>
<td>B2</td>
<td>H OR K</td>
</tr>
<tr>
<td>>6'-0" TO 9'-0"</td>
<td>0' TO 20'</td>
<td>650</td>
<td>B3</td>
<td>H OR K</td>
</tr>
<tr>
<td></td>
<td>>20' TO 30'</td>
<td>875</td>
<td>C</td>
<td>H OR K</td>
</tr>
<tr>
<td></td>
<td>>30' TO 40'</td>
<td>1,100</td>
<td>C2</td>
<td>J OR K</td>
</tr>
<tr>
<td>>9'-0" TO 12'-0"</td>
<td>0' TO 20'</td>
<td>650</td>
<td>C2</td>
<td>H OR K</td>
</tr>
<tr>
<td></td>
<td>>20' TO 30'</td>
<td>875</td>
<td>C2</td>
<td>J OR K</td>
</tr>
<tr>
<td></td>
<td>>30' TO 40'</td>
<td>1,100</td>
<td>D</td>
<td>L</td>
</tr>
<tr>
<td>>12'-0" TO 15'-0"</td>
<td>0' TO 20'</td>
<td>650</td>
<td>D</td>
<td>J OR L</td>
</tr>
<tr>
<td></td>
<td>>20' TO 30'</td>
<td>875</td>
<td>D</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>>30' TO 40'</td>
<td>1,100</td>
<td>D2</td>
<td>M</td>
</tr>
<tr>
<td>>15'-0" TO 18'-0"</td>
<td>0' TO 20'</td>
<td>650</td>
<td>D</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>>20' TO 30'</td>
<td>875</td>
<td>E</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>>30' TO 40'</td>
<td>1,100</td>
<td>E</td>
<td>M</td>
</tr>
</tbody>
</table>

Note:
1. Must maintain continuity of bond beam at top of wall.
2. If masonry opening exceeds scheduled vertical reinforcement spacing, then lintel, bond beam and wall above opening shall be filled solid over opening width.
3. Rated capacity of precast lintel by itself or through composite action with other elements.
GABLE ENDWALL DETAILS

2x4 P.T. @ 2'-0' O/C MAX.
ROOF SHEATHING

2'-0' MAX. OVERHANG

8' RAKED CONCRETE BEAM WITH 1#5 TOP
MINIMUM DEPTH= 8'
OR
CUT MASONRY BOND BEAM WITH 1#5 BAR
MINIMUM DEPTH= 8'

VARES CUT CMU TO MATCH SLOPE (8" MIN.)

NOTCH WEBS 29" FOR REINF.

CONCRETE SCREWS OR OTHER FASTENING SYSTEM @ 8" O/C RATED FOR 113# PULLOUT AND 90# SHEAR.

MAINTAIN 1 COURSE WITH 1#5 TOP CONTIN.
STANDARD HOOK WITH 25' LAP (TYP.)

GROUT STOP
SEPARATION STRIP

ALTERNATE CUT MASONRY BOND BEAM

MASONRY WALL

WOOD ROOF TRUSS

ROOF SHEATHING

GUIDE TO CONCRETE MASONRY RESIDENTIAL CONSTRUCTION IN HIGH WIND AREAS. 1997

110.11
Interior Bearing Wall Detail

Engineered Wood Roof Trusses, Designed for Interior Bearing

Standard Hook (25' Min. Lap)

6' CMU (Min.)

25' Minimum Lap

Per SSTD 10 with design considerations for site specific conditions.

<table>
<thead>
<tr>
<th>Span (')</th>
<th>Roof Truss Anchor Net Uplift (LBS) (Trusses @ 24°)</th>
<th>Max. Spacing of #5 Bar in Filled Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Interior Zone (Trusses 8' or closer to outside of endwall)</td>
<td>Bond Beam 'A' (6x8)</td>
</tr>
<tr>
<td>10'</td>
<td>134</td>
<td>11'-4'</td>
</tr>
<tr>
<td>20'</td>
<td>268</td>
<td>8'-8'</td>
</tr>
<tr>
<td>30'</td>
<td>402</td>
<td>6'-8'</td>
</tr>
<tr>
<td>40'</td>
<td>536</td>
<td>6'-0'</td>
</tr>
<tr>
<td>50'</td>
<td>670</td>
<td>4'-8'</td>
</tr>
<tr>
<td>60'</td>
<td>804</td>
<td>3'-4'</td>
</tr>
<tr>
<td>70'</td>
<td>938</td>
<td>3'-4'</td>
</tr>
<tr>
<td>80'</td>
<td>1072</td>
<td>2'-8'</td>
</tr>
</tbody>
</table>

NOTE:
1. Provide one #5 bar in grouted cell at corners and intersections.
2. Provide 1 #5 bar in grouted cell at each side of openings wider than 6'-0' and 2 #5 bars on each side of openings wider than 12'-0'.
3. Provide one #5 bar in grouted cell at all locations where girders or girder trusses bear on the masonry wall.
4. Interior bearing walls may be constructed of alternate materials in accordance with accepted standards.

Guide to Concrete Masonry Residential Construction in High Wind Areas, 1997

110.12
Lintel Schedule for 6" CMU Interior Walls

<table>
<thead>
<tr>
<th>Truss Span (5)</th>
<th>Opening Width</th>
<th>Precast Lintel Allowable Load (PLF)</th>
<th>Masonry Lintel</th>
<th>Cast In Place Beams (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0' TO 20'</td>
<td>0' TO 6'</td>
<td>617</td>
<td>B2, B3, C2</td>
<td>G, H OR K, J OR L</td>
</tr>
<tr>
<td></td>
<td>> 6' TO 9'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 6' TO 12'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>20' TO 30'</td>
<td>0' TO 6'</td>
<td>842</td>
<td>B2, C, D</td>
<td>H OR K, J OR K, L</td>
</tr>
<tr>
<td></td>
<td>> 6' TO 9'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 6' TO 12'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>30' TO 40'</td>
<td>0' TO 6'</td>
<td>1067</td>
<td>C, D, E</td>
<td>H OR K, J OR K, L</td>
</tr>
<tr>
<td></td>
<td>> 6' TO 9'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 6' TO 12'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>40' TO 50'</td>
<td>0' TO 6'</td>
<td>1292</td>
<td>C, D, E</td>
<td>J OR K, K, L</td>
</tr>
<tr>
<td></td>
<td>> 6' TO 9'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 6' TO 12'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>50' TO 60'</td>
<td>0' TO 6'</td>
<td>1517</td>
<td>C, D, E</td>
<td>J OR K, K, L</td>
</tr>
<tr>
<td></td>
<td>> 6' TO 9'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 6' TO 12'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>60' TO 70'</td>
<td>0' TO 6'</td>
<td>1742</td>
<td>D, E</td>
<td>K, L, M</td>
</tr>
<tr>
<td></td>
<td>> 6' TO 9'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 6' TO 12'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>70' TO 80'</td>
<td>0' TO 6'</td>
<td>1967</td>
<td>D</td>
<td>K, L, M</td>
</tr>
<tr>
<td></td>
<td>> 6' TO 9'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 6' TO 12'</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

1. MUST MAINTAIN CONTINUITY OF BOND BEAM.
2. Lintel types referenced are similar to 8" lintels (110.8) except the beam width is 6".
3. If masonry opening exceeds scheduled vertical reinforcement spacing, then lintel, bond beam and wall above opening shall be filled solid over opening width.
4. If the cast in place beam requires stirrups, than use 8" CMU interior wall.
5. The truss span equals the sum of the spans on both sides of the interior wall.
Guide to Concrete Masonry Residential

NOTES:
1. For No. 1, Hip, Corner Jacks and End Jacks of Hip Roofs, Use Truss Manufacturers' loads.
2. For End Jeaoks, the Side-wall Loads As Determined By This Document May Also Be Used.

<table>
<thead>
<tr>
<th>1084</th>
<th>6988</th>
<th>250 to 400</th>
</tr>
</thead>
<tbody>
<tr>
<td>840</td>
<td>550</td>
<td>20 to 300</td>
</tr>
<tr>
<td>566</td>
<td>403</td>
<td>0 to 200</td>
</tr>
</tbody>
</table>

Within 8' of Corner

Net Uplift End Zone

Net Uplift Interior Zone

Roof Truss Span

Truss Anchor Load Schedule, lbs.

Roof Truss Anchor

Masernry

Bond Beam

110 MPH Wind Area

110 MPH Wind Area

ENTRY PLAN

MASONRY POST AT ENTRY

PERIMETER BEAM FOR ENTRY

GUIDE TO CONCRETE MASONRY RESIDENTIAL CONSTRUCTION IN HIGH WIND AREAS. 1997
NOTE: SHEATHING MAY BE PROVIDED BETWEEN MAIN ROOF TRUSSES AND VALLEY SET TRUSSES.

THIS DETAIL APPLIES TO PRIMARY ROOF PLANES
SHEATHING NOTES:
ROOF SHEATHING TO BE WOOD STRUCTURAL PANEL RATED SHEATHING OR BETTER, EXPOSURE 1.

ROOF SHEATHING SHALL BE 7/16" THICKNESS OR GREATER.

ROOF TRUSSES @ 24" O/C MAXIMUM.

TRUSS TOP CHORDS SHALL HAVE A SPECIFIC GRAVITY OF G=0.46 OR GREATER.

NAILING PATTERN:

<table>
<thead>
<tr>
<th>ZONE</th>
<th>SPACING</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>12" O/C MAX. IN FIELD, 6" O/C MAX PANEL EDGES.</td>
</tr>
<tr>
<td>②</td>
<td>6" O/C MAX. IN FIELD & AT EDGES.</td>
</tr>
</tbody>
</table>

NAILS SHALL BE: 8d COMMON FOR 7/16" & 15/32", 10d COMMON FOR 1/2", 19/32", AND 5/8"

SEE ALSO SHEETS 110.7, 110.11, 110.18, 110.19, AND 110.20. FOR CABLE END REQUIREMENTS
ALTERNATE
GABLE END
 DETAIL

LEGEND KEY #
(TYP. THIS SHEET)

PRE-ENGINEERED
ROOF TRUSS
@24' O/C

(2)-8d
TOENAIL
INTO
BRACE

LEGEND

1. #2 2x6 @ 16' O/C
2. FULLY BLOCKED EDGES
3. ¾" MIN. RATED STRUCTURAL PANELS
 8d NAILS 6" O/C @ EDGES,
 12" O/C IN FIELD
4. DOUBLE 2x4 @ 32' O/C (1 EACH SIDE OF STUD)
5. 2x4 CONTINUOUS NAILED TO TRUSS WEBS.
6. 2x4 @ 32' O/C, ATTACH
 SHEATHING TO 2x4 @ 6' O/C WITH 8d NAILS
7. UPLIFT STRAP = 100 LBS @ EACH STUD
8. ½" BOLTS @ 48' O/C
9. (5) 8d NAILS FOR EACH 2x4
 OR ⅝" THRU-BOLT
10. ANGLE MAX.= 45°
11. 2x6 P.T.
12. 8d NAILS @ 6' O/C

GUIDE TO CONCRETE MASONRY RESIDENTIAL
CONSTRUCTION IN HIGH WIND AREAS. 1997

110.18
ALTERNATE GABLE END DETAIL

LEGEND KEY # (SEE SHEET 110.18)

8

OR PROPRIETARY ANCHOR RATED FOR 2000 LBS UPLIFT AND 700 LBS SHEAR PARALLEL TO WALL.

8

TYPE "A" OR "B" BOND BEAM AS DETERMINED IN TABLE 110.3

DETAIL G1

GUIDE TO CONCRETE MASONRY RESIDENTIAL CONSTRUCTION IN HIGH WIND AREAS, 1997